
fontFeatures

Jul 17, 2023

Contents:

1 The fontFeatures library 1
1.1 Routines: representing collections of layout rules . 4
1.2 Representing individual layout rules . 5
1.3 Value Records . 9

2 Converting features data between formats 11

3 Supporting Modules 13

4 Components 15

5 Indices and tables 17

Python Module Index 19

Index 21

i

ii

CHAPTER 1

The fontFeatures library

The FontFeatures class is a way of representing the transformations - substitutions and positionings - going on inside
a font at a semantically high level. It aims to be independent of and unconstrained by the OpenType representation,
with the assumption that these high-level objects can be either “compiled down” into AFDKO feature code or directly
written to the GSUB/GPOS tables of a font.

FontFeatures aims to marshal data between OTF binary representations, AFDKO feature code, FontDame, and can
power other representations such as the FEZ language (see the ‘fez’ library).

A FontFeatures representation of a font will make use of two other top-level concepts: Features and Routines. Routines
are collections of rules; they play a similar function to the AFDKO concept of a lookup, but unlike lookups, Routines
do not need to be comprised of rules of the same type. You can think of them as functions that are called on a glyph
string.

Here is an example of constructing a simple feature file using fontFeatures:

ff = FontFeatures()

liga_ffi = Substitution([["f"], ["f"], ["i"]], replacement=[["f_f_i"]])
liga_ffl = Substitution([["f"], ["f"], ["l"]], replacement=[["f_f_l"]])
liga_fi = Substitution([["f"], ["i"]], replacement=[["fi"]])
liga_ff = Substitution([["f"], ["f"]], replacement=[["f_f"]])
liga_routine = Routine(rules=[liga_ffi, liga_ffl, liga_fi, liga_ff])

ff.addFeature("liga", [liga_routine])

Export Adobe syntax
print(ff.asFea())

font = TTFont("Test.ttf")
ff.buildBinaryFeatures(font)
font.save("Test-liga.ttf")

class fontFeatures.FontFeatures
An object representing the layout rules in a font.

The initializer has no parameters.

1

fontFeatures

addFeature(name, rs)
Add Routines to a named feature.

Parameters

• name – The feature name.

• rs – A sequence of Routine or RoutineReference objects.

allRules(ruletype=None)
Return all rules in the font, optionally filtered by type

Parameters ruletype – A class (Positioning, Substitution etc) to filter the results.

Returns Routines stored in the preamble and within features.

anchors = None
A dictionary mapping glyph names to a dictionary of anchor names / positions.

asFeaAST(do_gdef=True)
Returns this font’s features as a feaLib AST object, for later translation to AFDKO code.

buildBinaryFeatures(font, axes=[])
Adds GDEF, GSUB and GPOS tables to a font object.

Parameters

• font – a fontTools ttFont object.

• axes – an optional list of objects conforming to the fontTools.designspaceLib.
AxisDescriptor protocol.

ensureLookupsAreReferences(lookuplist)
Ensures that all references are lookups.

Naughty people might put Routine objects directly into Chain lookups. This tidies them up.

features = None
An ordered dictionary mapping feature tags to a list of routine references.

classmethod fromXML(el)
Creates a FontFeatures object from a lxml Element object.

gensym(category)
Generate a new unique symbol (used for labeling unlabeled data).

Parameters category (str) – The category for this symbol

Returns: a string representing a unique label.

getNamedClassFor(glyphs, name)
Find and optionally stores a named class of glyphs

Parameters

• glyphs – A sequence of glyph names.

• name – A name for this glyph class if it does not exist.

Returns The name of a glyph class. If the exact same set of glyphs was already stored as a glyph
class, then the name of that class will be returned. If not, then the class will be stored and the
name provided as the name argument will be returned.

glyphclasses = None
A dictionary mapping glyph names to their categories.

2 Chapter 1. The fontFeatures library

fontFeatures

hasScriptSupport(script)
Check if the features object has support for a particular script.

Parameters script (str) – A four-character OpenType script code.

Returns: boolean

hoist_languages()
Sort routines into scripts and languages and resolve wildcards.

markRoutineUseInChains()
Annotate routines which are used in chaining rules.

Generally used when converting the fontFeatures object to another format; allows routines to know where
they are being used by annotating them with the .usedin property for optimization purposes.

namedClasses = None
A mapping of named classes to a list of glyph names which make up the class.

partitionRoutine(routine, factor)
Splits a routine based on a predicate.

This method applies a function to each rule in the routine and creates distinct routines, each containing rules
with the same return value from the function. This is useful, for example, when exporting to OpenType, to
ensure that all rules in a routine must have the same type, same flags, etc.

Parameters

• routine – A Routine object.

• factor – A function applied to each of the Rule objects.

Returns: A list of Routine objects. Additionally, modifies the .routines list of the FontFeatures
object.

referenceRoutine(r, do_usecount=True)
Store a routine and return a reference to it.

Parameters r – A Routine object.

resolveAllRoutines()
Resolve reference use in chains.

Checks that all routines referenced in chain rules can actually be found within the object, and adds pointers
to match named routine references with the relevant Routine object.

routineNamed(name)
Finds a routine with the given name.

Parameters name (str) – The name to find

Returns: a Routine object if the named routine was found in the features object. Raises a
ValueError if not.

routines = None
All of the layout routines used in this font.

scratch = None
Space for items to communicate context to each other.

setGlyphClassesFromFont(font)
Loads glyph classes from the font.

3

fontFeatures

toXML()
Serializes a FontFeatures object to a lxml Element object.

1.1 Routines: representing collections of layout rules

class fontFeatures.Routine(name=”, rules=None, address=None, inlined=False, lan-
guages=None, parent=None, flags=0, markFilteringSet=None,
markAttachmentSet=None)

Represent a Routine (similar to OT Lookup).

A routine is a set of rules, sometimes but not always with an explicit name. It can apply to a set of language/script
pairs.

addComment(comment)
Adds a comment to a Routine.

Comments are emitted when the Routine is converted to text formats such as AFDKO.

Parameters comment – A string comment.

addRule(rule)
Adds a rule to a Routine.

Parameters rule – A Substitution, Positioning, etc. object.

dependencies
Returns a list of Routine objects called as lookups in this Routine.

classmethod fromXML(el)
Creates a Routine from a lxml Element object.

involved_glyphs
Returns the names of all of the glyphs involved in this Routine.

stage
Returns which shaping stage this routine is used in.

Returns: sub for substitution stage, pos for positioning stage.

toOTLookup(font, ff)
Converts a fontFeatures.Routine object to binary.

Parameters

• font – A TTFont object.

• ff – The parent FontFeatures object containing this routine.

Returns a list of fontTools.otlLib.builder Builder objects allowing this routine to be converted
to binary layout format.

toXML()
Serializes a Routine to a lxml Element object.

class fontFeatures.RoutineReference(name=None, routine=None)
A reference to a Routine object, used in a lookup.

Routines can be referenced either by name (for example, when loaded from a textual representation), in which
case they will be resolved at a later time, or by providing a pointer to the Routine object.

asFea()
Returns this Rule as a string of AFDKO feature text.

4 Chapter 1. The fontFeatures library

fontFeatures

classmethod fromXML(el)
Creates a RoutineReference from a lxml Element object.

resolve(ff)
Resolves the reference in the context of a FontFeatures object.

Raises a ValueError if a named routine cannot be found.

stage
Returns which shaping stage this routine is used in.

Returns: sub for substitution stage, pos for positioning stage.

toXML()
Serializes a RoutineReference to a lxml Element object.

class fontFeatures.ExtensionRoutine(**kwargs)
OpenType-specific concept: A routine which contains other routines.

apply_to_buffer(buf, stage=None, feature=None)
Applies shaping rules from this routine to a buffer.

Parameters

• buf – A fontFeatures.shaperLib.Buffer object.

• stage (str) – Shaping stage - sub or pos.

• feature (str) – The feature being processed. (For debugging.)

Modifies the buf object.

asFeaAST()
Returns this extension routine as fontTools.feaLib.ast objects.

rules
All rules under this extension.

Returns: A flattened list of Rule objects.

stage
Returns which shaping stage this routine is used in.

Returns: sub for substitution stage, pos for positioning stage.

1.2 Representing individual layout rules

class fontFeatures.Rule
A base class for all rules.

asFea()
Returns this Rule as a string of AFDKO feature text.

dependencies
Returns a list of Routine objects called as lookups in this Routine.

feaPreamble(ff)
Computes any text that needs to go in the feature file header.

classmethod fromXML(el)
Creates a Rule from a lxml Element object.

1.2. Representing individual layout rules 5

fontFeatures

has_context
Does this rule have any pre- or post-context defined?

toXML()
Serializes a Rule to a lxml Element object.

class fontFeatures.Substitution(input_, replacement, precontext=None, postcontext=None, ad-
dress=None, languages=None, lookups=None, reverse=False,
flags=0, force_alt=False)

Represents a Substitution rule.

A substitution represents any kind of exchange of one set of glyphs for another: single substitutions, multiple
substitutions and ligatures are all substitutions. Optionally, substitutions may be followed by precontext and
postcontext.

Parameters

• input – A list of lists. The outer list represents the positions in the glyph stream to substi-
tute, with the inner list representing the glyph names at each position.

• replacement – A list of glyph names.

• precontext – A list of list of glyphs which must appear before the input sequence.

• postcontext – A list of list of glyphs which must appear before the input sequence.

• lookups – A list of list of lookups to be applied to the glyph sequence. The outer list
represents the positions in the input sequence, with the inner list containing Routines to
apply.

• reverse – Boolean representing if the substitutions should take place from the end of the
string.

• force_alt – Force this substitution to be interpreted as an alternate substitution.

Examples:

lig = Substitution(
[["f"], ["i"]],
["f_i"]

) # sub f i by f_i;

contextual = Substitution(
[["dotbelow"]],
[["dotbelow.post"]],
precontext = [["ra-myanmar", "ra-myanmar.bt1", "ra-myanmar.bt2"]]

) # sub [ra-myanmar ra-myanmar.bt1 ra-myanmar.bt2] dotbelow-myanmar'
by dotbelow-myanmar.post;

classmethod fromXML(el)
Creates a rule from a lxml Element object.

involved_glyphs
Returns a set of all glyphs involved in this rule.

lookup_type(forFea=False)
Mixin to determine the GSUB lookup type of a fontFeatures.Substitution object

Returns: integer GSUB lookup type.

class fontFeatures.Positioning(glyphs, valuerecords, precontext=None, postcontext=None, ad-
dress=None, languages=None, flags=0)

Represents a Positioning rule.

6 Chapter 1. The fontFeatures library

fontFeatures

Parameters

• input – A list of lists. The outer list represents the positions in the glyph stream to position,
with the inner list representing the glyph names at each glyph stream position.

• valuerecords – A list of ValueRecord objects to be applied at each glyph stream
position.

• precontext – A list of list of glyphs which must appear before the input sequence.

• postcontext – A list of list of glyphs which must appear before the input sequence.

Example:

open_up_behs = Positioning(
[

["BEi1", "BEi2"],
["sda", "sdb", "dda", "ddb"]

],
[

ValueRecord(xAdvance=200),
ValueRecord(xPlacement=50),

]
postcontext = [medis_finas]

)
pos [BEi1 BEi2]' <0 0 200 0> [sda sdb dda ddb]' <0 50 0 0> @medis_finas;

classmethod fromXML(el)
Creates a rule from a lxml Element object.

involved_glyphs
Returns a set of all glyphs involved in this rule.

lookup_type()
Mixin to determine the GPOS lookup type of a fontFeatures.Positioning object

Returns: integer GPOS lookup type.

class fontFeatures.Attachment(base_name, mark_name, bases=None, marks=None, full-
name=None, flags=0, address=None, font=None, lan-
guages=None, force_markmark=False)

Represents an Attachment rule.

Parameters

• base_name – Name of the base class.

• mark_name – Name of the mark class.

• bases – Dictionary. They keys are names of glyphs to act as bases to the attachment
(this may be categorized as mark glyphs if the attachment is a mark-to-mark operation); the
associated values are a two-element tuple with the coordinates of the anchor.

• marks – Dictionary. They keys are names of glyphs to act as marks; the associated values
are a two-element tuple with the coordinates of the anchor.

• force_markmark – boolean. If true, force this to be interpreted as a mark-to-mark oper-
ation

Whether this is a mark-to-base or mark-to-mark operation will be determined by the glyph category of the glyphs
involved in the bases dictionary and the value of the force_markmark argument.

Examples:

1.2. Representing individual layout rules 7

fontFeatures

ff.anchors = {
"a": { "top": (250, 603) },
"acutecomb": { "_top": (56, 0) }

}

top_bases = {}
top_marks = {}
for glyphname, anchors in ff.anchors.items():

for anchorname, position in anchors.items():
if anchorname == "top":

top_bases[glyphname] = position
if anchorname == "_top":

top_marks[glyphname] = position

top_bases = { "a": (260,603) }
top_marks = { "acutecomb": (56,0) }

tops = Attachment("top", "_top", top_bases, top_marks)

classmethod fromXML(el)
Creates a rule from a lxml Element object.

involved_glyphs
Returns a set of all glyphs involved in this rule.

is_cursive
Returns true if this is a cursive attachment rule.

lookup_type()
Mixin to determine the GPOS lookup type of a fontFeatures.Attachment object

Returns: integer GPOS lookup type.

shaper_inputs()
Returns a list of potential glyphs to determine whether to test if this rule applies at a given point.

would_apply_at_position(buf, ix, namedclasses={})
Tests to see if this rule would apply at position ix of the buffer.

class fontFeatures.Chaining(input_, precontext=None, postcontext=None, address=None, lan-
guages=None, lookups=None, flags=0)

Represents a Chain rule.

A Chain rule represents the operation of calling another Routine when a particular input context is met.

Parameters

• input – A list of lists. The outer list represents the positions in the glyph stream to substi-
tute, with the inner list representing the glyph names at each position.

• precontext – A list of list of glyphs which must appear before the input sequence.

• postcontext – A list of list of glyphs which must appear before the input sequence.

• lookups – A list of list of lookups to be applied to the glyph sequence. The outer list
represents the positions in the input sequence, with the inner list containing Routines to
apply.

Example:

8 Chapter 1. The fontFeatures library

fontFeatures

sub_Qu = Routine(rules=[
Substitute([["Q"]], [["Q.beforeu"]])

])

chain = Chain(
[["Q"]],
postcontext = [["u", "v", "u.sc", "v.sc"]],
lookups = [[sub_Qu]]

) # sub Q' lookup sub_Qu [u v u.sc v.sc];

dependencies
Returns a list of Routine objects called as lookups in this Routine.

classmethod fromXML(el)
Creates a rule from a lxml Element object.

involved_glyphs
Returns a set of all glyphs involved in this rule.

lookup_type()
Mixin to determine the GSUB/GPOS lookup type of a fontFeatures.Chaining object

Returns: integer GSUB/GPOS lookup type.

stage
Returns which shaping stage this routine is used in.

Returns: sub for substitution stage, pos for positioning stage.

1.3 Value Records

class fontFeatures.ValueRecord(xPlacement=None, yPlacement=None, xAdvance=None, yAd-
vance=None, xPlaDevice=None, yPlaDevice=None, xAdvDe-
vice=None, yAdvDevice=None, vertical=False, location=None)

A value record for representing positional changes in advance and placement.

See fontTools.feaLib.ValueRecord, from which this inherits.

is_variable
Returns true if any of the elements of the value record are a fontTools.feaLib.VariableScalar.

toOTValueRecord(ff, pairPosContext=False)
Converts the ValueRecord to an OTLValueRecord object. If the value record contains any variable
scalars, they are saved to the GDEF variation store.

1.3. Value Records 9

fontFeatures

10 Chapter 1. The fontFeatures library

CHAPTER 2

Converting features data between formats

The following modules help with converting font features information to and for different formats.

class fontFeatures.feaLib.FeaParser(featurefile, font=None, glyphNames=None, in-
cludeDir=None)

Turns a AFDKO feature file or string into a FontFeatures object.

Parameters

• featurefile – File object or string.

• font – Optionally, a TTFont object.

• glyphNames – Optionally, a list of glyph names in the font

parse()
Parse the feature code.

Returns A FontFeatures object containing the rules of this file.

ttLib: Interfacing with TrueType fonts.

This package contains routines for converting between fontTools objects (representing TrueType/OpenType fonts) and
fontFeatures. This particular module is mainly concerned with getting information out of binary OTF/TTF fonts and
into fontFeatures.

fontFeatures.ttLib.unparse(font, do_gdef=False, doLookups=True, config={})
Convert a binary OpenType font into a fontFeatures object

Parameters

• font – A TTFont object.

• do_gdef – Boolean. Whether the GDEF table should also be read.

• doLookups – Whether the lookups should be read, or just the script/language information
and top-level features.

• config – A dictionary of glyph class and routine names.

11

fontFeatures

fontFeatures.ttLib.unparseLanguageSystems(tables)
Build a set of script / language pairs from a GSUB/GPOS table.

Parameters tables – A list of fontTools.ttLib.tables.G_S_U_B_.
table_G_S_U_B_ / fontTools.ttLib.tables.G_P_O_S_.table_G_P_O_S_
objects.

Returns an ordered dictionary whose keys are four-character script tags and whose values are a set of
four-character language tags.

class fontFeatures.fontDameLib.FontDameParser(lines, config={}, glyphset=())
Convert layout files in Monotype’s FontDame format to fontFeatures.

Parameters

• lines – An array of strings containing the FontDame file, one line per string.

• config – A dictionary of glyph class names.

• glyphset – A list of glyph names in the font.

parse()
Parses the font file, creating a fontFeatures object.

Returns: A fontFeatures object containing the rules in the FontDame file.

12 Chapter 2. Converting features data between formats

CHAPTER 3

Supporting Modules

The following modules were written to support the creation of fontFeatures plugins.

OpenType fonts are “programmed” using features, which are normally authored in Adobe’s feature file format. This
like source code to a computer program: it’s a user-friendly, but computer-unfriendly, way to represent the features.

Inside a font, the features are compiled in an efficient internal format. This is like the binary of a computer program:
computers can use it, but they can’t do else anything with it, and people can’t read it.

The purpose of this library is to provide a middle ground for representing features in a machine-manipulable format,
kind of like the abstract syntax tree of a computer programmer. This is so that:

• features can be represented in a structured human-readable and machine-readable way, analogous to the XML
files of the Unified Font Object format.

• features can be more directly authored by programs (such as font editors), rather than them having to output
AFDKO feature file format.

• features can be easily manipulated by programs - for example, features from two files merged together, or
lookups moved between languages.

How is this different from fontTool’s feaLib? I’m glad you asked. feaLib translates between the
Adobe feature file format and a abstract syntax tree representing elements of the feature file - not repre-
senting the feature data. The AST is still “source equivalent”. For example, when you code an aalt
feature in feature file format, you might include code like feature salt to include lookups from an-
other feature. But what’s actually meant by that is a set of lookups. fontFeatures allows you to
manipulate meaning, not description.

13

http://adobe-type-tools.github.io/afdko/OpenTypeFeatureFileSpecification.html
https://simoncozens.github.io/fonts-and-layout/features.html#how-features-are-stored
http://unifiedfontobject.org/

fontFeatures

14 Chapter 3. Supporting Modules

CHAPTER 4

Components

fontFeatures consists of the following components:

• fontFeatures itself, which is an abstract representation of the different layout operations inside a font.

• fontFeatures.feaLib (included as a mixin) which translates between Adobe feature syntax and fontFea-
tures representation.

• fontFeatures.ttLib which translates between OpenType binary fonts and fontFeatures representation.
(Currently only OTF -> fontFeatures is partially implemented; there is no fontFeatures -> OTF com-
piler yet.)

• fontFeatures.fontDameLib which translate FontDame text files into fontFeatures objects.

And the following utilities:

• otf2fea: translates an OTF file into Adobe features syntax.

• txt2fea: translates a FontDame txt file into Adobe features syntax.

15

fontFeatures

16 Chapter 4. Components

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

17

fontFeatures

18 Chapter 5. Indices and tables

Python Module Index

f
fontFeatures, 1
fontFeatures.feaLib, 11
fontFeatures.fontDameLib, 12
fontFeatures.shaperLib, 13
fontFeatures.ttLib, 11

19

fontFeatures

20 Python Module Index

Index

A
addComment() (fontFeatures.Routine method), 4
addFeature() (fontFeatures.FontFeatures method), 1
addRule() (fontFeatures.Routine method), 4
allRules() (fontFeatures.FontFeatures method), 2
anchors (fontFeatures.FontFeatures attribute), 2
apply_to_buffer() (fontFea-

tures.ExtensionRoutine method), 5
asFea() (fontFeatures.RoutineReference method), 4
asFea() (fontFeatures.Rule method), 5
asFeaAST() (fontFeatures.ExtensionRoutine method),

5
asFeaAST() (fontFeatures.FontFeatures method), 2
Attachment (class in fontFeatures), 7

B
buildBinaryFeatures() (fontFea-

tures.FontFeatures method), 2

C
Chaining (class in fontFeatures), 8

D
dependencies (fontFeatures.Chaining attribute), 9
dependencies (fontFeatures.Routine attribute), 4
dependencies (fontFeatures.Rule attribute), 5

E
ensureLookupsAreReferences() (fontFea-

tures.FontFeatures method), 2
ExtensionRoutine (class in fontFeatures), 5

F
FeaParser (class in fontFeatures.feaLib), 11
feaPreamble() (fontFeatures.Rule method), 5
features (fontFeatures.FontFeatures attribute), 2
FontDameParser (class in fontFea-

tures.fontDameLib), 12
FontFeatures (class in fontFeatures), 1

fontFeatures (module), 1
fontFeatures.feaLib (module), 11
fontFeatures.fontDameLib (module), 12
fontFeatures.shaperLib (module), 13
fontFeatures.ttLib (module), 11
fromXML() (fontFeatures.Attachment class method), 8
fromXML() (fontFeatures.Chaining class method), 9
fromXML() (fontFeatures.FontFeatures class method),

2
fromXML() (fontFeatures.Positioning class method), 7
fromXML() (fontFeatures.Routine class method), 4
fromXML() (fontFeatures.RoutineReference class

method), 4
fromXML() (fontFeatures.Rule class method), 5
fromXML() (fontFeatures.Substitution class method), 6

G
gensym() (fontFeatures.FontFeatures method), 2
getNamedClassFor() (fontFeatures.FontFeatures

method), 2
glyphclasses (fontFeatures.FontFeatures attribute),

2

H
has_context (fontFeatures.Rule attribute), 5
hasScriptSupport() (fontFeatures.FontFeatures

method), 2
hoist_languages() (fontFeatures.FontFeatures

method), 3

I
involved_glyphs (fontFeatures.Attachment at-

tribute), 8
involved_glyphs (fontFeatures.Chaining attribute),

9
involved_glyphs (fontFeatures.Positioning at-

tribute), 7
involved_glyphs (fontFeatures.Routine attribute), 4
involved_glyphs (fontFeatures.Substitution at-

tribute), 6

21

fontFeatures

is_cursive (fontFeatures.Attachment attribute), 8
is_variable (fontFeatures.ValueRecord attribute), 9

L
lookup_type() (fontFeatures.Attachment method), 8
lookup_type() (fontFeatures.Chaining method), 9
lookup_type() (fontFeatures.Positioning method), 7
lookup_type() (fontFeatures.Substitution method), 6

M
markRoutineUseInChains() (fontFea-

tures.FontFeatures method), 3

N
namedClasses (fontFeatures.FontFeatures attribute),

3

P
parse() (fontFeatures.feaLib.FeaParser method), 11
parse() (fontFeatures.fontDameLib.FontDameParser

method), 12
partitionRoutine() (fontFeatures.FontFeatures

method), 3
Positioning (class in fontFeatures), 6

R
referenceRoutine() (fontFeatures.FontFeatures

method), 3
resolve() (fontFeatures.RoutineReference method), 5
resolveAllRoutines() (fontFea-

tures.FontFeatures method), 3
Routine (class in fontFeatures), 4
routineNamed() (fontFeatures.FontFeatures

method), 3
RoutineReference (class in fontFeatures), 4
routines (fontFeatures.FontFeatures attribute), 3
Rule (class in fontFeatures), 5
rules (fontFeatures.ExtensionRoutine attribute), 5

S
scratch (fontFeatures.FontFeatures attribute), 3
setGlyphClassesFromFont() (fontFea-

tures.FontFeatures method), 3
shaper_inputs() (fontFeatures.Attachment

method), 8
stage (fontFeatures.Chaining attribute), 9
stage (fontFeatures.ExtensionRoutine attribute), 5
stage (fontFeatures.Routine attribute), 4
stage (fontFeatures.RoutineReference attribute), 5
Substitution (class in fontFeatures), 6

T
toOTLookup() (fontFeatures.Routine method), 4

toOTValueRecord() (fontFeatures.ValueRecord
method), 9

toXML() (fontFeatures.FontFeatures method), 3
toXML() (fontFeatures.Routine method), 4
toXML() (fontFeatures.RoutineReference method), 5
toXML() (fontFeatures.Rule method), 6

U
unparse() (in module fontFeatures.ttLib), 11
unparseLanguageSystems() (in module fontFea-

tures.ttLib), 11

V
ValueRecord (class in fontFeatures), 9

W
would_apply_at_position() (fontFea-

tures.Attachment method), 8

22 Index

	The fontFeatures library
	Routines: representing collections of layout rules
	Representing individual layout rules
	Value Records

	Converting features data between formats
	Supporting Modules
	Components
	Indices and tables
	Python Module Index
	Index

