

fontFeatures: Python library for manipulating OpenType font features

Contents:

	The fontFeatures library
	Routines: representing collections of layout rules

	Representing individual layout rules

	Value Records

	Converting features data between formats

	Supporting Modules

OpenType fonts are “programmed” using features, which are normally
authored in Adobe’s feature file
format [http://adobe-type-tools.github.io/afdko/OpenTypeFeatureFileSpecification.html].
This like source code to a computer program: it’s a user-friendly, but
computer-unfriendly, way to represent the features.

Inside a font, the features are compiled in an efficient internal
format [https://simoncozens.github.io/fonts-and-layout/features.html#how-features-are-stored].
This is like the binary of a computer program: computers can use it, but
they can’t do else anything with it, and people can’t read it.

The purpose of this library is to provide a middle ground for
representing features in a machine-manipulable format, kind of like the
abstract syntax tree of a computer programmer. This is so that:

	features can be represented in a structured human-readable and
machine-readable way, analogous to the XML files of the Unified Font
Object [http://unifiedfontobject.org/] format.

	features can be more directly authored by programs (such as font
editors), rather than them having to output AFDKO feature file
format.

	features can be easily manipulated by programs - for example,
features from two files merged together, or lookups moved between
languages.

How is this different from fontTool’s feaLib? I’m glad you asked.
feaLib translates between the Adobe feature file format and a
abstract syntax tree representing elements of the feature file -
not representing the feature data. The AST is still “source
equivalent”. For example, when you code an aalt feature in
feature file format, you might include code like feature salt to
include lookups from another feature. But what’s actually meant by
that is a set of lookups. fontFeatures allows you to manipulate
meaning, not description.

Components

fontFeatures consists of the following components:

	fontFeatures itself, which is an abstract representation of the
different layout operations inside a font.

	fontFeatures.feaLib (included as a mixin) which translates
between Adobe feature syntax and fontFeatures representation.

	fontFeatures.ttLib which translates between OpenType binary
fonts and fontFeatures representation. (Currently only OTF ->
fontFeatures is partially implemented; there is no
fontFeatures -> OTF compiler yet.)

	fontFeatures.fontDameLib which translate FontDame text files into fontFeatures objects.

And the following utilities:

	otf2fea: translates an OTF file into Adobe features syntax.

	txt2fea: translates a FontDame txt file into Adobe features syntax.

Indices and tables

	Index

	Module Index

	Search Page

The fontFeatures library

The FontFeatures class is a way of representing the transformations -
substitutions and positionings - going on inside a font at a semantically
high level. It aims to be independent of and unconstrained by the OpenType
representation, with the assumption that these high-level objects can be
either “compiled down” into AFDKO feature code or directly written to the
GSUB/GPOS tables of a font.

FontFeatures aims to marshal data between OTF binary representations,
AFDKO feature code, FontDame, and can power other representations such as the
FEZ language (see the ‘fez’ library).

A FontFeatures representation of a font will make use of two other top-level
concepts: Features and Routines. Routines are collections of rules; they play
a similar function to the AFDKO concept of a lookup, but unlike lookups,
Routines do not need to be comprised of rules of the same type. You can think
of them as functions that are called on a glyph string.

Here is an example of constructing a simple feature file using fontFeatures:

ff = FontFeatures()

liga_ffi = Substitution([["f"], ["f"], ["i"]], replacement=[["f_f_i"]])
liga_ffl = Substitution([["f"], ["f"], ["l"]], replacement=[["f_f_l"]])
liga_fi = Substitution([["f"], ["i"]], replacement=[["fi"]])
liga_ff = Substitution([["f"], ["f"]], replacement=[["f_f"]])
liga_routine = Routine(rules=[liga_ffi, liga_ffl, liga_fi, liga_ff])

ff.addFeature("liga", [liga_routine])

Export Adobe syntax
print(ff.asFea())

font = TTFont("Test.ttf")
ff.buildBinaryFeatures(font)
font.save("Test-liga.ttf")

	
class fontFeatures.FontFeatures

	An object representing the layout rules in a font.

The initializer has no parameters.

	
addFeature(name, rs)

	Add Routines to a named feature.

	Parameters

	
	name – The feature name.

	rs – A sequence of Routine or RoutineReference objects.

	
allRules(ruletype=None)

	Return all rules in the font, optionally filtered by type

	Parameters

	ruletype – A class (Positioning, Substitution etc)
to filter the results.

	Returns

	Routines stored in the preamble and within features.

	
anchors = None

	A dictionary mapping glyph names to a dictionary of anchor names / positions.

	
asFeaAST(do_gdef=True)

	Returns this font’s features as a feaLib AST object, for later
translation to AFDKO code.

	
buildBinaryFeatures(font, axes=[])

	Adds GDEF, GSUB and GPOS tables to a font object.

	Parameters

	
	font – a fontTools ttFont object.

	axes – an optional list of objects conforming to the
fontTools.designspaceLib.AxisDescriptor protocol.

	
ensureLookupsAreReferences(lookuplist)

	Ensures that all references are lookups.

Naughty people might put Routine objects directly into
Chain lookups. This tidies them up.

	
features = None

	An ordered dictionary mapping feature tags to a list of routine references.

	
classmethod fromXML(el)

	Creates a FontFeatures object from a lxml Element object.

	
gensym(category)

	Generate a new unique symbol (used for labeling unlabeled data).

	Parameters

	category (str) – The category for this symbol

Returns: a string representing a unique label.

	
getNamedClassFor(glyphs, name)

	Find and optionally stores a named class of glyphs

	Parameters

	
	glyphs – A sequence of glyph names.

	name – A name for this glyph class if it does not exist.

	Returns

	The name of a glyph class. If the exact same set of glyphs
was already stored as a glyph class, then the name of that
class will be returned. If not, then the class will be stored
and the name provided as the name argument will be returned.

	
glyphclasses = None

	A dictionary mapping glyph names to their categories.

	
hasScriptSupport(script)

	Check if the features object has support for a particular script.

	Parameters

	script (str) – A four-character OpenType script code.

Returns: boolean

	
hoist_languages()

	Sort routines into scripts and languages and resolve wildcards.

	
markRoutineUseInChains()

	Annotate routines which are used in chaining rules.

Generally used when converting the fontFeatures object to another
format; allows routines to know where they are being used by annotating
them with the .usedin property for optimization purposes.

	
namedClasses = None

	A mapping of named classes to a list of glyph names which make up the class.

	
partitionRoutine(routine, factor)

	Splits a routine based on a predicate.

This method applies a function to each rule in the routine and creates
distinct routines, each containing rules with the same return value
from the function. This is useful, for example, when exporting to
OpenType, to ensure that all rules in a routine must have the same type,
same flags, etc.

	Parameters

	
	routine – A Routine object.

	factor – A function applied to each of the Rule objects.

Returns: A list of Routine objects. Additionally, modifies
the .routines list of the FontFeatures object.

	
referenceRoutine(r, do_usecount=True)

	Store a routine and return a reference to it.

	Parameters

	r – A Routine object.

	
resolveAllRoutines()

	Resolve reference use in chains.

Checks that all routines referenced in chain rules can actually
be found within the object, and adds pointers to match named routine
references with the relevant Routine object.

	
routineNamed(name)

	Finds a routine with the given name.

	Parameters

	name (str) – The name to find

	Returns: a Routine object if the named routine was found

	in the features object. Raises a ValueError if not.

	
routines = None

	All of the layout routines used in this font.

	
scratch = None

	Space for items to communicate context to each other.

	
setGlyphClassesFromFont(font)

	Loads glyph classes from the font.

	
toXML()

	Serializes a FontFeatures object to a lxml Element object.

Routines: representing collections of layout rules

	
class fontFeatures.Routine(name='', rules=None, address=None, inlined=False, languages=None, parent=None, flags=0, markFilteringSet=None, markAttachmentSet=None)

	Represent a Routine (similar to OT Lookup).

A routine is a set of rules, sometimes but not always with an explicit name.
It can apply to a set of language/script pairs.

	
addComment(comment)

	Adds a comment to a Routine.

Comments are emitted when the Routine is converted to text formats
such as AFDKO.

	Parameters

	comment – A string comment.

	
addRule(rule)

	Adds a rule to a Routine.

	Parameters

	rule – A Substitution, Positioning, etc. object.

	
dependencies

	Returns a list of Routine objects called as lookups in
this Routine.

	
classmethod fromXML(el)

	Creates a Routine from a lxml Element object.

	
involved_glyphs

	Returns the names of all of the glyphs involved in this Routine.

	
stage

	Returns which shaping stage this routine is used in.

Returns: sub for substitution stage, pos for positioning stage.

	
toOTLookup(font, ff)

	Converts a fontFeatures.Routine object to binary.

	Parameters

	
	font – A TTFont object.

	ff – The parent FontFeatures object containing this routine.

Returns a list of fontTools.otlLib.builder Builder objects allowing this
routine to be converted to binary layout format.

	
toXML()

	Serializes a Routine to a lxml Element object.

	
class fontFeatures.RoutineReference(name=None, routine=None)

	A reference to a Routine object, used in a lookup.

Routines can be referenced either by name (for example, when loaded from a
textual representation), in which case they will be resolved at a later time,
or by providing a pointer to the Routine object.

	
asFea()

	Returns this Rule as a string of AFDKO feature text.

	
classmethod fromXML(el)

	Creates a RoutineReference from a lxml Element object.

	
resolve(ff)

	Resolves the reference in the context of a FontFeatures
object.

Raises a ValueError if a named routine cannot be found.

	
stage

	Returns which shaping stage this routine is used in.

Returns: sub for substitution stage, pos for positioning stage.

	
toXML()

	Serializes a RoutineReference to a lxml Element object.

	
class fontFeatures.ExtensionRoutine(**kwargs)

	OpenType-specific concept: A routine which contains other routines.

	
apply_to_buffer(buf, stage=None, feature=None)

	Applies shaping rules from this routine to a buffer.

	Parameters

	
	buf – A fontFeatures.shaperLib.Buffer object.

	stage (str) – Shaping stage - sub or pos.

	feature (str) – The feature being processed. (For debugging.)

Modifies the buf object.

	
asFeaAST()

	Returns this extension routine as fontTools.feaLib.ast objects.

	
rules

	All rules under this extension.

Returns: A flattened list of Rule objects.

	
stage

	Returns which shaping stage this routine is used in.

Returns: sub for substitution stage, pos for positioning stage.

Representing individual layout rules

	
class fontFeatures.Rule

	A base class for all rules.

	
asFea()

	Returns this Rule as a string of AFDKO feature text.

	
dependencies

	Returns a list of Routine objects called as lookups in
this Routine.

	
feaPreamble(ff)

	Computes any text that needs to go in the feature file header.

	
classmethod fromXML(el)

	Creates a Rule from a lxml Element object.

	
has_context

	Does this rule have any pre- or post-context defined?

	
toXML()

	Serializes a Rule to a lxml Element object.

	
class fontFeatures.Substitution(input_, replacement, precontext=None, postcontext=None, address=None, languages=None, lookups=None, reverse=False, flags=0, force_alt=False)

	Represents a Substitution rule.

A substitution represents any kind of exchange of one set of glyphs for
another: single substitutions, multiple substitutions and ligatures are all
substitutions. Optionally, substitutions may be followed by precontext and
postcontext.

	Parameters

	
	input – A list of lists. The outer list represents the positions in
the glyph stream to substitute, with the inner list representing
the glyph names at each position.

	replacement – A list of glyph names.

	precontext – A list of list of glyphs which must appear before the input
sequence.

	postcontext – A list of list of glyphs which must appear before the input
sequence.

	lookups – A list of list of lookups to be applied to the glyph sequence.
The outer list represents the positions in the input sequence, with
the inner list containing Routines to apply.

	reverse – Boolean representing if the substitutions should take place from
the end of the string.

	force_alt – Force this substitution to be interpreted as an alternate
substitution.

Examples:

lig = Substitution(
 [["f"], ["i"]],
 ["f_i"]
) # sub f i by f_i;

contextual = Substitution(
 [["dotbelow"]],
 [["dotbelow.post"]],
 precontext = [["ra-myanmar", "ra-myanmar.bt1", "ra-myanmar.bt2"]]
) # sub [ra-myanmar ra-myanmar.bt1 ra-myanmar.bt2] dotbelow-myanmar'
 # by dotbelow-myanmar.post;

	
classmethod fromXML(el)

	Creates a rule from a lxml Element object.

	
involved_glyphs

	Returns a set of all glyphs involved in this rule.

	
lookup_type(forFea=False)

	Mixin to determine the GSUB lookup type of a fontFeatures.Substitution object

Returns: integer GSUB lookup type.

	
class fontFeatures.Positioning(glyphs, valuerecords, precontext=None, postcontext=None, address=None, languages=None, flags=0)

	Represents a Positioning rule.

	Parameters

	
	input – A list of lists. The outer list represents the positions in
the glyph stream to position, with the inner list representing
the glyph names at each glyph stream position.

	valuerecords – A list of ValueRecord objects to be applied at each
glyph stream position.

	precontext – A list of list of glyphs which must appear before the input
sequence.

	postcontext – A list of list of glyphs which must appear before the input
sequence.

Example:

open_up_behs = Positioning(
 [
 ["BEi1", "BEi2"],
 ["sda", "sdb", "dda", "ddb"]
],
 [
 ValueRecord(xAdvance=200),
 ValueRecord(xPlacement=50),
]
 postcontext = [medis_finas]
)
pos [BEi1 BEi2]' <0 0 200 0> [sda sdb dda ddb]' <0 50 0 0> @medis_finas;

	
classmethod fromXML(el)

	Creates a rule from a lxml Element object.

	
involved_glyphs

	Returns a set of all glyphs involved in this rule.

	
lookup_type()

	Mixin to determine the GPOS lookup type of a fontFeatures.Positioning object

Returns: integer GPOS lookup type.

	
class fontFeatures.Attachment(base_name, mark_name, bases=None, marks=None, fullname=None, flags=0, address=None, font=None, languages=None, force_markmark=False)

	Represents an Attachment rule.

	Parameters

	
	base_name – Name of the base class.

	mark_name – Name of the mark class.

	bases – Dictionary. They keys are names of glyphs to act as bases to
the attachment (this may be categorized as mark glyphs if the
attachment is a mark-to-mark operation); the associated values are
a two-element tuple with the coordinates of the anchor.

	marks – Dictionary. They keys are names of glyphs to act as marks;
the associated values are a two-element tuple with the coordinates
of the anchor.

	force_markmark – boolean. If true, force this to be interpreted as a
mark-to-mark operation

Whether this is a mark-to-base or mark-to-mark operation will be determined
by the glyph category of the glyphs involved in the bases dictionary and
the value of the force_markmark argument.

Examples:

ff.anchors = {
 "a": { "top": (250, 603) },
 "acutecomb": { "_top": (56, 0) }
}

top_bases = {}
top_marks = {}
for glyphname, anchors in ff.anchors.items():
 for anchorname, position in anchors.items():
 if anchorname == "top":
 top_bases[glyphname] = position
 if anchorname == "_top":
 top_marks[glyphname] = position

top_bases = { "a": (260,603) }
top_marks = { "acutecomb": (56,0) }

tops = Attachment("top", "_top", top_bases, top_marks)

	
classmethod fromXML(el)

	Creates a rule from a lxml Element object.

	
involved_glyphs

	Returns a set of all glyphs involved in this rule.

	
is_cursive

	Returns true if this is a cursive attachment rule.

	
lookup_type()

	Mixin to determine the GPOS lookup type of a fontFeatures.Attachment object

Returns: integer GPOS lookup type.

	
shaper_inputs()

	Returns a list of potential glyphs to determine whether to test if this
rule applies at a given point.

	
would_apply_at_position(buf, ix, namedclasses={})

	Tests to see if this rule would apply at position ix of the buffer.

	
class fontFeatures.Chaining(input_, precontext=None, postcontext=None, address=None, languages=None, lookups=None, flags=0)

	Represents a Chain rule.

A Chain rule represents the operation of calling another Routine when
a particular input context is met.

	Parameters

	
	input – A list of lists. The outer list represents the positions in
the glyph stream to substitute, with the inner list representing
the glyph names at each position.

	precontext – A list of list of glyphs which must appear before the input
sequence.

	postcontext – A list of list of glyphs which must appear before the input
sequence.

	lookups – A list of list of lookups to be applied to the glyph sequence.
The outer list represents the positions in the input sequence, with
the inner list containing Routines to apply.

Example:

sub_Qu = Routine(rules=[
 Substitute([["Q"]], [["Q.beforeu"]])
])

chain = Chain(
 [["Q"]],
 postcontext = [["u", "v", "u.sc", "v.sc"]],
 lookups = [[sub_Qu]]
) # sub Q' lookup sub_Qu [u v u.sc v.sc];

	
dependencies

	Returns a list of Routine objects called as lookups in
this Routine.

	
classmethod fromXML(el)

	Creates a rule from a lxml Element object.

	
involved_glyphs

	Returns a set of all glyphs involved in this rule.

	
lookup_type()

	Mixin to determine the GSUB/GPOS lookup type of a fontFeatures.Chaining object

Returns: integer GSUB/GPOS lookup type.

	
stage

	Returns which shaping stage this routine is used in.

Returns: sub for substitution stage, pos for positioning stage.

Value Records

	
class fontFeatures.ValueRecord(xPlacement=None, yPlacement=None, xAdvance=None, yAdvance=None, xPlaDevice=None, yPlaDevice=None, xAdvDevice=None, yAdvDevice=None, vertical=False, location=None)

	A value record for representing positional changes in advance and placement.

See fontTools.feaLib.ValueRecord, from which this inherits.

	
is_variable

	Returns true if any of the elements of the value record are a
fontTools.feaLib.VariableScalar.

	
toOTValueRecord(ff, pairPosContext=False)

	Converts the ValueRecord to an OTLValueRecord object. If the
value record contains any variable scalars, they are saved to the
GDEF variation store.

Converting features data between formats

The following modules help with converting font features information to and
for different formats.

	
class fontFeatures.feaLib.FeaParser(featurefile, font=None, glyphNames=None, includeDir=None)

	Turns a AFDKO feature file or string into a FontFeatures object.

	Parameters

	
	featurefile – File object or string.

	font – Optionally, a TTFont object.

	glyphNames – Optionally, a list of glyph names in the font

	
parse()

	Parse the feature code.

	Returns

	A FontFeatures object containing the rules of this file.

ttLib: Interfacing with TrueType fonts.

This package contains routines for converting between fontTools objects
(representing TrueType/OpenType fonts) and fontFeatures. This particular
module is mainly concerned with getting information out of binary OTF/TTF
fonts and into fontFeatures.

	
fontFeatures.ttLib.unparse(font, do_gdef=False, doLookups=True, config={})

	Convert a binary OpenType font into a fontFeatures object

	Parameters

	
	font – A TTFont object.

	do_gdef – Boolean. Whether the GDEF table should also be read.

	doLookups – Whether the lookups should be read, or just the script/language
information and top-level features.

	config – A dictionary of glyph class and routine names.

	
fontFeatures.ttLib.unparseLanguageSystems(tables)

	Build a set of script / language pairs from a GSUB/GPOS table.

	Parameters

	tables – A list of fontTools.ttLib.tables.G_S_U_B_.table_G_S_U_B_ /
fontTools.ttLib.tables.G_P_O_S_.table_G_P_O_S_ objects.

	Returns an ordered dictionary whose keys are four-character script tags and

	whose values are a set of four-character language tags.

	
class fontFeatures.fontDameLib.FontDameParser(lines, config={}, glyphset=())

	Convert layout files in Monotype’s FontDame format to fontFeatures.

	Parameters

	
	lines – An array of strings containing the FontDame file, one line per string.

	config – A dictionary of glyph class names.

	glyphset – A list of glyph names in the font.

	
parse()

	Parses the font file, creating a fontFeatures object.

Returns: A fontFeatures object containing the rules in the FontDame file.

Supporting Modules

The following modules were written to support the creation of
fontFeatures plugins.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fontFeatures	

 	
 	
 fontFeatures.feaLib	

 	
 	
 fontFeatures.fontDameLib	

 	
 	
 fontFeatures.shaperLib	

 	
 	
 fontFeatures.ttLib	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	addComment() (fontFeatures.Routine method)

 	addFeature() (fontFeatures.FontFeatures method)

 	addRule() (fontFeatures.Routine method)

 	allRules() (fontFeatures.FontFeatures method)

 	anchors (fontFeatures.FontFeatures attribute)

 	
 	apply_to_buffer() (fontFeatures.ExtensionRoutine method)

 	asFea() (fontFeatures.RoutineReference method)

 	(fontFeatures.Rule method)

 	asFeaAST() (fontFeatures.ExtensionRoutine method)

 	(fontFeatures.FontFeatures method)

 	Attachment (class in fontFeatures)

B

 	
 	buildBinaryFeatures() (fontFeatures.FontFeatures method)

C

 	
 	Chaining (class in fontFeatures)

D

 	
 	dependencies (fontFeatures.Chaining attribute)

 	(fontFeatures.Routine attribute)

 	(fontFeatures.Rule attribute)

E

 	
 	ensureLookupsAreReferences() (fontFeatures.FontFeatures method)

 	
 	ExtensionRoutine (class in fontFeatures)

F

 	
 	FeaParser (class in fontFeatures.feaLib)

 	feaPreamble() (fontFeatures.Rule method)

 	features (fontFeatures.FontFeatures attribute)

 	FontDameParser (class in fontFeatures.fontDameLib)

 	FontFeatures (class in fontFeatures)

 	fontFeatures (module)

 	fontFeatures.feaLib (module)

 	fontFeatures.fontDameLib (module)

 	fontFeatures.shaperLib (module)

 	
 	fontFeatures.ttLib (module)

 	fromXML() (fontFeatures.Attachment class method)

 	(fontFeatures.Chaining class method)

 	(fontFeatures.FontFeatures class method)

 	(fontFeatures.Positioning class method)

 	(fontFeatures.Routine class method)

 	(fontFeatures.RoutineReference class method)

 	(fontFeatures.Rule class method)

 	(fontFeatures.Substitution class method)

G

 	
 	gensym() (fontFeatures.FontFeatures method)

 	
 	getNamedClassFor() (fontFeatures.FontFeatures method)

 	glyphclasses (fontFeatures.FontFeatures attribute)

H

 	
 	has_context (fontFeatures.Rule attribute)

 	
 	hasScriptSupport() (fontFeatures.FontFeatures method)

 	hoist_languages() (fontFeatures.FontFeatures method)

I

 	
 	involved_glyphs (fontFeatures.Attachment attribute)

 	(fontFeatures.Chaining attribute)

 	(fontFeatures.Positioning attribute)

 	(fontFeatures.Routine attribute)

 	(fontFeatures.Substitution attribute)

 	
 	is_cursive (fontFeatures.Attachment attribute)

 	is_variable (fontFeatures.ValueRecord attribute)

L

 	
 	lookup_type() (fontFeatures.Attachment method)

 	(fontFeatures.Chaining method)

 	(fontFeatures.Positioning method)

 	(fontFeatures.Substitution method)

M

 	
 	markRoutineUseInChains() (fontFeatures.FontFeatures method)

N

 	
 	namedClasses (fontFeatures.FontFeatures attribute)

P

 	
 	parse() (fontFeatures.feaLib.FeaParser method)

 	(fontFeatures.fontDameLib.FontDameParser method)

 	
 	partitionRoutine() (fontFeatures.FontFeatures method)

 	Positioning (class in fontFeatures)

R

 	
 	referenceRoutine() (fontFeatures.FontFeatures method)

 	resolve() (fontFeatures.RoutineReference method)

 	resolveAllRoutines() (fontFeatures.FontFeatures method)

 	Routine (class in fontFeatures)

 	
 	routineNamed() (fontFeatures.FontFeatures method)

 	RoutineReference (class in fontFeatures)

 	routines (fontFeatures.FontFeatures attribute)

 	Rule (class in fontFeatures)

 	rules (fontFeatures.ExtensionRoutine attribute)

S

 	
 	scratch (fontFeatures.FontFeatures attribute)

 	setGlyphClassesFromFont() (fontFeatures.FontFeatures method)

 	shaper_inputs() (fontFeatures.Attachment method)

 	stage (fontFeatures.Chaining attribute)

 	(fontFeatures.ExtensionRoutine attribute)

 	(fontFeatures.Routine attribute)

 	(fontFeatures.RoutineReference attribute)

 	
 	Substitution (class in fontFeatures)

T

 	
 	toOTLookup() (fontFeatures.Routine method)

 	toOTValueRecord() (fontFeatures.ValueRecord method)

 	toXML() (fontFeatures.FontFeatures method)

 	(fontFeatures.Routine method)

 	(fontFeatures.RoutineReference method)

 	(fontFeatures.Rule method)

U

 	
 	unparse() (in module fontFeatures.ttLib)

 	
 	unparseLanguageSystems() (in module fontFeatures.ttLib)

V

 	
 	ValueRecord (class in fontFeatures)

W

 	
 	would_apply_at_position() (fontFeatures.Attachment method)

 nav.xhtml

 Table of Contents

 		
 fontFeatures: Python library for manipulating OpenType font features

 		
 The fontFeatures library

 		
 Routines: representing collections of layout rules

 		
 Representing individual layout rules

 		
 Value Records

 		
 Converting features data between formats

 		
 Supporting Modules

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

